Movimiento rectilíneo

 

Movimiento rectilíneo
marca.gif (847 bytes)Movimiento rectilíneo
Movimiento de caída
de los cuerpos
Regresión lineal
Movimiento rectilíneo
uniforme
Movimiento rectilíneo
u. acelerado
Movimiento rectilíneo y uniforme

Movimiento rectilíneo uniformemente acelerado

 

Movimiento rectilíneo

Se denomina movimiento rectilíneo, aquél cuya trayectoria es una línea recta.

Cine_01.gif (1561 bytes)

En la recta situamos un origen O, donde estará un observador que medirá la posición del móvil x en el instante t. Las posiciones serán positivas si el móvil está a la derecha del origen y negativas si está a la izquierda del origen.

Posición

La posición x del móvil se puede relacionar con el tiempo t mediante una función x=f(t).

Cine_02.gif (1315 bytes)

Desplazamiento

Supongamos ahora que en el tiempo t, el móvil se encuentra en posición x, más tarde, en el instante t' el móvil se encontrará en la posición x'. Decimos que móvil se ha desplazado Dx=x'-x en el intervalo de tiempo Dt=t'-t, que va desde el instante t al instante t'.

Velocidad

La velocidad media entre los instantes t y t' está definida por

Para determinar la velocidad en el instante t, debemos hacer el intervalo de tiempo Dt tan pequeño como sea posible, en el límite cuando Dt tiende a cero.

Pero dicho límite es la definición de derivada de x con respecto del tiempo t.

Aceleración

En general, la velocidad de un cuerpo es una función del tiempo. Supongamos que en un instante t la velocidad del móvil es v, y en el instante t' la velocidad del móvil es v'. Se denomina aceleración media entre los instantes t y t' al cociente entre el cambio de velocidad Dv=v'-v y el intervalo de tiempo en el que se ha tardado en efectuar dicho cambio, Dt=t'-t.

La aceleración en el instante t es el límite de la aceleración media cuando el intervalo Dt tiende a cero, que no es otra cosa que la definición de la derivada de v.

 

Dada la velocidad del móvil hallar el desplazamiento

Si conocemos un registro de la velocidad podemos calcular el desplazamiento x-x0 del móvil entre los instantes t0 y t, mediante la integral definida.

El producto v dt representa el desplazamiento del móvil entre los instantes t y t+dt, o en el intervalo dt. El desplazamiento total es la suma de los infinitos desplazamientos infinitesimales entre los instantes t0 y t.

Cine_04.gif (3077 bytes) En la figura, se muestra una gráfica de la velocidad en función del tiempo, el área en color azul mide el desplazamiento total del móvil entre los instantes t0 y t, el segmento en color azul marcado en la trayectoria recta.

Hallamos la posición x del móvil en el instante t, sumando la posición inicial x0 al desplazamiento, calculado mediante la medida del área bajo la curva v-t o mediante cálculo de la integral definida en la fórmula anterior.

 

Dada la aceleración del móvil hallar el cambio de velocidad

Del mismo modo que hemos calculado el desplazamiento del móvil entre los instantes t0 y t, a partir de un registro de la velocidad v en función del tiempo t, podemos calcular el cambio de velocidad v-v0 que experimenta el móvil entre dichos instantes, a partir de un registro de la aceleración en función del tiempo.

Cine_05.gif (2726 bytes) En la figura,  el cambio de velocidad v-v0 es el área bajo la curva a-t, o el valor numérico de la integral definida en la fórmula anterior.

Conociendo el cambio de velocidad v-v0, y el valor inicial v0 en el instante t0, podemos calcular la velocidad v en el instante t.

Resumiendo, las fórmulas empleadas para resolver problemas de movimiento rectilíneo son

 

Movimiento rectilíneo uniforme

Cine_06.gif (2335 bytes) Un movimiento rectilíneo uniforme es aquél cuya velocidad es constante, por tanto, la aceleración es cero. La posición x del móvil en el instante t lo podemos calcular integrando

o gráficamente, en la representación de v en función de t.

Habitualmente, el instante inicial t0 se toma como cero, por lo que las ecuaciones del movimiento uniforme resultan

 

Movimiento rectilíneo uniformemente acelerado

Cine_07.gif (2304 bytes) Un movimiento uniformemente acelerado es aquél cuya aceleración es constante. Dada la aceleración podemos obtener el cambio de velocidad v-v0 entre los instantes t0 y t, mediante integración, o gráficamente.

Cine_08.gif (1636 bytes) Dada la velocidad en función del tiempo, obtenemos el desplazamiento x-x0 del móvil entre los instantes t0 y t, gráficamente (área de un rectángulo + área de un triángulo), o integrando

Habitualmente, el instante inicial t0 se toma como cero, quedando las fórmulas del movimiento rectilíneo uniformemente acelerado más simplificadas.

Despejando el tiempo t en la segunda ecuación  y sustituyéndola en la tercera, relacionamos la velocidad v con el desplazamiento x-x0